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Repulsive step potential: A model for a liquid-liquid phase transition
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In the framework of the perturbation theory for fluids we study the model with the isotropic repulsive step
potential which in addition to the hard core has a repulsive soft core of a larger radius. It is shown that this
purely repulsive potential is sufficient to explain a liquid-liquid phase transition and liquid anomalies.
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It has been known for many years that a system of h
spheres experiences the only phase transition at a high
sity, when s' l , where s is the hard sphere diameter,l
5(V/N)1/3 is the average interparticle distance (V is the sys-
tem volume,N is the number of particles!. This transition
corresponds to the ordering of the centers of gravity of
particles and may be called an order-disorder transition
crystallization. In the case of hard particles of differe
shapes such as hard rods, ellipses, discs, etc., a numb
orientational phase transitions may occur in accordance
a hierarchy of characteristic lengths, which are defined
particle shapes. A new situation arises when an extra in
action of finite amplitude« is added to a system of har
particles. As it is known from van der Waals theory, a ne
tive value of« inevitably causes an instability of the syste
in a certain range of density and generally leads to a fi
order phase transition with no symmetry change~the order
parameter, characterizing this transition is simply the den
difference of the coexisting phases:Dr5r12r2). This situ-
ation is almost universal and doesnot depend on the inte
tion length.

Much less is known about a case when the interac
parameter« has a positive value. The simplest examp
of that kind of interaction is the so-called repulsive st
potential

F~r !5H `, r<s

«, s,r<s1

0, r .s1 .

~1!

Thereafter we will call a system of particles interacting v
the potential~1!: a system of ‘‘collapsing’’ hard spheres@1#.
This kind of system is studied in connection with anomalo
melting curves, isostructural phase transitions, transfor
tions in colloid systems, etc.~see, for example, Refs.@2–6#!.
A general conclusion derived from numerous studies of
system is that the repulsive interaction of finite amplitu
and length results in the melting curve anomaly and the
structural solid-solid phase transition. The latter is a fir
order phase transition and may end in the critical point, si
there is no symmetry change across the phase transition
The existence of that kind of a phase transition is a dir
consequence of the form of the interparticle interaction a
we do not see any particular reason why it cannot occur
fluid phase.
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It is widely believed~see, for example, Refs.@7,8#! that a
fluid-fluid transition should be related to the attractive part
the potential. In the present paper we show that the pu
repulsive step potential~1! is sufficient to explain a liquid-
liquid phase transition and anomalous behaviors of the th
mal expansion coefficient.

We apply to the problem the second-order thermodyna
perturbation theory for fluids. The soft core of the potent
~1! is treated as perturbation with respect to the hard sph
potential. In this case the free energy of the system may
written in the form@9,10#

F2FHS

NkBT
5

1

2
rbE u1~r !gHS~r !dr2

1

4
rb2FkBTS ]r

]PD
0
G

3E @u1~r !#2gHS~r !dr , ~2!

wherer5V/N is the mean number density,b51/kBT, u1(r )
is the perturbation part of the potentialu1(r )5F(r )
2FHS(r ), FHS(r ) is the hard sphere singular potentia
gHS(r ) is the hard sphere radial distribution function, whic
is taken in the Percus-Yevick approximation@11#. In the
same approximation the compressibility can be written in
form @10#

kBTS ]r

]PD
0

5
~12h!4

~112h!2
. ~3!

To calculateFHS , one can use, for example, the approx
mate equation@10#

FHS

kBTN
53 ln l211 ln r1

4h23h2

~12h!2
. ~4!

Herel5h/(2pmkBT)1/2 andh5prs3/6.
Further in this paper we use the dimensionless quantit

P̃5Ps3/«, Ṽ5V/Ns351/r̃, T̃5kBT/«, omitting the tilde
marks. Results of the calculations are demonstrated in Fig
and 2. In Fig. 1 a family of pressure isotherms is shown
the system withs1 /s51.5. The van der Waals loops in th
isotherms at low temperatures are clearly seen, this indic
the existence of the first-order liquid-liquid phase transitio
A critical point is found atTc'0.21,Vc'1.015.
©2003 The American Physical Society01-1
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An interesting and unusual feature of the isotherms in F
1 is their intersection in the low-density region. This kind
behavior means negative value of the thermal expansion
efficient in the certain region of density and temperature
Fig. 2 the thermal expansion coefficientaP5V21(]V/]T)P
is shown as a function of temperature for two values of s
cific volumesV150.85 andV251.25, corresponding to th
high-density and low-density liquids, respectively. One c
see that in the case of the low-density liquid there is a ra
of negative values ofaP below the critical temperature.

Using the Maxwell construction we were able to calcula
the equilibrium lines of the liquid-liquid phase transitions
different values ofs1 /s ~Fig. 3!. We cannot extend the tran
sition lines down to zero temperature because of limitation
the perturbation approach.

FIG. 1. Compression isotherms of the collapsing sphere sys
at various temperatures~dimensionless units!.

FIG. 2. The thermal expansion coefficientaP as a function of
temperature for two values of specific volumesV150.85 andV2

51.25, V1,Vc,V2 ~dimensionless units!.
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One can see from Fig. 3 that~1! the critical temperature
decreases when the ratios1 /s increases and~2! the slope of
the transition curves changes drastically with changes in
ratio s1 /s and temperature. Decrease of the critical te
perature may suggest that the transition ceases to exi
high values of the ratios1 /s. It is not surprising since a
long-range interaction perturbation energy can be treate
the mean field approximation. In this case the perturbat
energy is a positive monotonic function of volume (dF
}1/V), and cannot provide any ground for the existence o
phase transition. The change of the slope of the transi
line means in accordance with the Clausius-Clapeyron eq
tion dT/dP5DV/DS (DV and DS are change of volume
and entropy at transition! that the entropy jump at the tran
sition changes sign for different values of the ratios1 /s and
temperature. This behavior of the entropy change can be
sibly understood in the terms of the entropy of mixin
meaning that two states of the particles of the system ma
considered as two different species.

To elucidate the nature of the transition it is instructive
estimate the coefficient of surface tension between two liq
phasesg(T). In the case of a liquid-liquid transition it is
convenient to use the simple equation which is the gene
zation of the well-known equations obtained by Fowl
Kirkwood, and Buff@12–14#:

g~T!5
p

8E0

`

drr 4F8~r !r̃2~r !, ~5!

where

r̃2~r !5~r l 1Agl 1
~r !2r l 2Agl 2

~r !!2, ~6!

r l i
andgl i

(r ) are the density and the radial distribution fun

tion of the i th phase@15#.
In the approximation corresponding to the second-or

perturbation theory~2!, the radial distribution functiongl i
(r )

can be written in the form@10#

m
FIG. 3. Phase diagram of the liquid-liquid phase transition

different values ofs1 /s ~dimensionless units!.
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gl i
~r !5H gHS~r !expS 2

1

T

~12h i !
4

~112h i !
2D , r ,s1

gHS~r !, r>s1 .

~7!

It should be noted that Eq.~7! gives qualitatively correct
description of two-peak structure of the radial distributi
function of the system with the potential~1!.

Approximations~5!–~7! are rather crude, but we believ
that they at least qualitatively correctly describe the beha
of surface tension as a function of temperature and press

Using Eq.~1! we rewrite Eq.~5! in the form

g~T!5
p

8
@s4«r̃2~s!2kBTs4r̃2~s!2s1

4«r̃2~s1!#. ~8!

From Eq. ~8! one can see that in the case of hard sph
potential surface tension coefficientg(T) is always negative,
however, it may become positive for the potential~1! due to
the first term in the right-hand side of Eq.~8!. It should be
noted that it is the last term of Eq.~8! that explains the
decrease of critical temperature of liquid-liquid transiti
with increasings1 ~see Fig. 3!.

In Fig. 4 we show the dimensionless surface tension
efficient g̃(T)5gs2/« as a function of dimensionless tem
perature T̃5kBT/« for two ratios s1 /s51.5 and s1 /s
51.6 ~the tilde marks are omitted!.These curves are calcu
lated along the corresponding curves in Fig. 3. From Fig
one can see that the coefficient of surface tension is pos
and tends to zero as temperature approachesTc . So that the
liquid-liquid phase transition in the system with purely rep
sive step potential is a true first-order phase transition
occurs through nucleation and growth of the new phase.

We would like to emphasize that we do not claim that t
second-order perturbation scheme, which was used in
present paper, gives high precision quantitative results, h
ever, it seems reliable enough to give correct qualitative
scription of the liquid-liquid transition in the system with th
potential~1!. It should be noted that the first-order perturb
tion theory gives qualitatively the same results.

The liquid-liquid transition line found lies most probab
below the melting curve and may be observed only in me
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stable liquid state, like it was discovered in the supercoo
water@16,17#. Though in some cases the liquid-liquid trans
tion may be observed in stable liquids@18,19#.

Note that one would expect to get second phase transit
corresponding to the liquid-gas transformation, when an
tractive tail is appended to the repulsive step potential, a
was seen in the molecular dynamic calculations@20,21#. We
perform corresponding calculations using the second-o
perturbation scheme with the core-softened potential p
posed by Stanley and co-authors@20,21# and found second
phase transition and second critical point. That may
viewed as some sort of justification of our approach to ph
transformations in liquids.

Finally, we found essential evidences for a first-ord
phase transition in the liquid state of a system of collaps
hard spheres.

We thank V. V. Brazhkin, A. G. Lyapin, and E. E
Tareyeva for stimulating discussions. The work was s
ported by the Russian Foundation for Basic Research~Grant
No. 02-02-16622!.

FIG. 4. Dimensionless surface tension coefficientg(T) as a
function of dimensionless temperatureT for two ratioss1 /s51.5
ands1 /s51.6.
-

@1# S. M. Stishov, JETP95, 64 ~2002!.
@2# P.C. Hemmer and G. Stell, Phys. Rev. Lett.24, 1284 ~1970!;

G. Stell and P.C. Hemmer, J. Chem. Phys.56, 4274~1972!.
@3# J.M. Kincaid, G. Stell, and E. Goldmark, J. Chem. Phys.65,

2172 ~1976!.
@4# D.A. Young and B.J. Alder, Phys. Rev. Lett.38, 1213~1977!;

J. Chem. Phys.70, 473 ~1979!.
@5# P. Bolhuis and D. Frenkel, J. Phys.: Condens. Matter9, 381

~1997!.
@6# A.R. Denton and H. Lowen, J. Phys.: Condens. Matter9, L1

~1997!.
@7# E.A. Jagla, J. Chem. Phys.111, 8980~1999!.
@8# E.A. Jagla, Phys. Rev. E63, 061501~2001!.
@9# J.A. Barker and D. Henderson, J. Chem. Phys.47, 2856
~1967!.

@10# J.A. Barker and D. Henderson, Rev. Mod. Phys.48, 587
~1976!.

@11# W.R. Smith and W. Henderson, Mol. Phys.19, 411 ~1970!.
@12# R.H. Fowler, Proc. R. Soc. London, Ser. A159, 229 ~1937!.
@13# J. Kirkwood and F. Buff, J. Chem. Phys.17, 338 ~1949!.
@14# I. Z. Fisher,Statistical Theory of Liquids, ~Fizmatgiz, Moscow,

1961!.
@15# In the spirit of the papers@12,13# we suppose that in the vicin

ity of interphase surface pair distribution functionr2(r1 ,r2)
5r(z1)r(z2)g(r12r 2,z1 ,z2) is approximated in the follow-
ing way:
1-3



-

V.
y

s.

nd

:

by
-

RAPID COMMUNICATIONS

VALENTIN N. RYZHOV AND SERGEI M. STISHOV PHYSICAL REVIEW E67, 010201~R! ~2003!
z1.0, z2.0,
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r l 2

Agl 1
~r !gl 2

~r !.
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